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Computing the Reliability of k out of n systems

by

Philip J. Boland and Frank Proschan

Abstract

\ N )
K 7;\;{ ({J{,"n?"‘lr
e surveys,some of the more important theoretical results about the structure
of the reliability function of a k out of n system, and indicate%how these results
may be used to obtain easily calculable bounds for the reliability of a specified

k out of n systen.
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1. Introduction.

A system of n components which functions if and only if at least k of the
components function is called a k out of n system. Parallel systems are 1 out
of n systems, fail safe systems are n-1 out of n systems, and series systems are
n out of n systems. We make the assumption that the n components in the system
operate independently of one another. Therefore if p = (pl, cens pn) is the vec-
tor of component reliabilities and ¢ = (el, veey en) represents any vector with
components equal to zeroes or ones,

€ € 1l-¢ l-¢

1 n n
then h () = ) Py eee P (1-p)  ...(1-p.)
k €, E.+...+ enZk 1 n 1 n

= "1
is the probability that k or more of the components function. We refer to
hk(g): [o, 11" » [0, 1] as the reliability function of a k out of n system with
independent components. For parallel, failsafe, and series systems, the relia-

bility function hk(EJ is a quite manageable function, even for large values of n.

In general, however, the behavior of the function hk(p) on [0, 1]n can be quite

complex, and the calculation of hk(p) at a single vector of component reliabilities
can be quite cumbersome. In the relatively simple case of a 5 out of 8 system for
example, evaluating hs(g) would usually involve calculating 93 products of 8 num-
bers. In this expository paper we survey some of the important theoretical re-
sults which have been obtained about the reliability function hk(g), and indicate
how these may be used to reduce calculations and obtain good bounds for the

reliability of a k out of n system.

2. Basic Theoretical Results.

Hoeffding (1956) considers the problem of finding the maximum and minimum
n
of hk(pl’ coss p“) subject to the constraint that 2 P is held fixed. His results
i=1
sre presented in terms of the number of successes in independent Bernoulli trials.

. “.-ii
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It is clear however that if S is the number of successes in n independent Bernoulli
trials with respective success probabilities Pps cves Py then Prob(Szk) = hk

(pl' oo pn). For a given vector p = (pl. cess pn) of component probabilities,

n
we let p= 2 P; /n, | Z P; ] be the greatest integer less than or ecqual to 2 P>
i=] i=1 i=

and (1, ..., 1, X p; - [ { p;1, 0, ..., 0) be the vector with [Xpi] of its n
i=1 ! i=}

coordinates equal to 1. Hoeffding proves in particular the following thecorem:

Theorem 1. For any vector p = (pl, cevs pn) of component probabilities we
have:
n - -
1=h(1, ..., L }p Ep 0, ..., 0) 2 h(py, -.oh P) 2 (P, ..o’ P)
1=1 i=1
if Zp 2k,
i=1
while _
n n _ _
0=h(l, ..., 1, iglpi - iz P; |0, ey O Sshlpy, ooy p) sHGy -ooy P)

if 2 p; S k-1.
i=1

Hoeffdzng also establishes upper and lower bounds for h, (p) for the case

when k-1 < i p < k; however these bounds are considcrably more complicated.
i=l
We present the first of four figures in an attempt to give some geometrical

insight into the behavior of hk(gj. For any a such that 0 < a < n, we define
n
A“ = {p: 2 Py =¢ and 0 < P; <1 for i= 1,..., n}. Although the convex set Ay =

is the intersection of the hyperplane {x: Z x; = a} with the n-dimensional unit
i=1
cube, it will be represented geometrically by a '"line'" in the following figures.

The n-dimensional cube itself is represented by a ''square', and by the "diagonal®

we will mean the line of points all of whose coordirates are equal. Theorem 1 says
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that h, (p) restricted to A, 8ssumes a maximum of one at the ‘extremities’ of

Aa and a2 minimum of hk(a/n, «+., a/n) along the diagonal whenever a 2 k, while

# it assumes a maximum of hk(o/n, ««+, a/n) on the diagonal and a minimum of 0

at the extremities of Aa whenever a S k-1.

(Figure 1 goes here.)

The theory of majorization and Schur functions provides an elegant format
for presenting many of the results concerning the reliability function ‘nk(p_) .
Gi e 9 ose LI i
ven a vector x = (xl R xn), let xu] -4 x[2] 2 2 x[n] denote a decreasing

rearrangement of Xys vees Xoo (we write x > y) if

: 2 { : j= L) -
121 X[I] yh] for j=1, n-1

i=1

n n
R R
Hardy, Littlewood and Polya (1952) show that X > y if and only if there exists
a doubly stochastic matrix M such that y = xlt, If x >0 Y, then the coordinates
of x are more "dispersed' than those of Y (See Marshall and Olkin (1979) for an
excellent treatment of majorization.) Schur functions are real valued functions
which are monotone with respect to the partial ordering of majorization. A

function h with the property that x > Y = h(x) 2 (3) h(y) is called Schur

convex (Schur concave). A useful characterization of Schur convexity (-concavity)

is given by the Schur-Ostrowski condition, which states that a differentiable
permutation invariant function h defined on R® is Schur convex (Schur concave)

if and only if

3h h ; n
(xi - xj) (Ki- -a-;j) 2 (<) 0 for all i, j and xeR'.

Some useful comparisons for hk(g) can be ohtained by working with the

hazard transform. The hazard transform 2 [0, -')" + [0, =) of hk is defined




by
z, (R R) = -lo (e'Rl e'Rn)
k ll L ] n ghk 3 veosy .
Pledger and Proschan (1971) prove the following theorem about 2,:

Theorem 2. The hazard transform z, of a k out of n system is increasing

k
and Schur concave on [0, w)n.
A particularly interesting corollary of Theorem 2 is that hk(pl, ceey pn)

n /n

2 hk(pG, cens pG) where Pg is the geometric mean iglpi)l Together with

Theorem 1 this implies that

WPy eees P) 2 Wy (PG +ons PR
whenever n

izlpi < k-1.

Gleser (1975) uses majorization to obtain refinements of the inequalities
established by Hoeffding. If S is the number of successes in n independent
trials with respective success probabilities Pys» +-» Pp» then Samuels (1965)
shows that Prob(S=j) is unimodal with mode at [.g pi] or ['g pi+1]. Using this
fact together with the Schur-Ostrowski conditiozflcleser p;;tes the following
theorem:

Theorem 3. The reliability function hk(E): [o, 1]n -+ [0, 1] is Schur convex

n
) p; S k-2.

in the region where g P; 2 k¢l and Schur concave in the region where
' i=l

i=1
Figure 2 may help to illustrate Theorem 3. The region shaded by vertical
lines indicates where hk(n) is Schur convex, while the area shaded by horizontal

1ines indicates where hk(R) is Schur concave.

(Figure 2 goes here.)
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Ifp = (pl, cees pn) where n>2, we denote by p_ij the vector in [0, 1]n.2
obtained by deleting the ith and jth coordinates of p. For any r20, we let
h;(gij ) denote the probability that exactly r of the n-2 components (with
respective probabilities given by Bij) function, Boland and Proschan (1983)
prove that

hl:_z(gij) s () bt ptly  for i#j, k22
whenever

P, 2 (<) -E:—i— for all %i,j. This result, coupled with the Schur-
Ostrowski condition, enable Boland and Proschan to prove the following Schur
property of hk(g) :

Theorem 4. The reliability function hk(p_): fo, l]fl + [0, 1] is Schur convex

in the region [ %, l]" and Schur concave in the region [0, % ]n.

The point (:—:—}. ees -::%}-) on the diagonal is a focal point in distinguishing
the regions where hk(g_) is Schur convex and Schur concave. The number :—:i— plays
an important role in the study of the function of one variable hk(p) =
12! (2) pi(l-p)n'i. (Note that hk(p) is the restriction of hk(p_) to the diagonal.)
i}::(p) is convex on the interval [0, -::—i) and concave on the interval [k—:%,l] (Sce
Barlow and Proschan (1965)). Figure 3 may help to interpret Theorem 4. Again

the vertically (horizontally) shaded region indicates wherc hk(p_) is Schur convex

{Schur concave), Figure 4 illustrates the combined results of Theorem 3 and

Theorem 4.

(Figure 3 and Figure 4 go here.)




3. Applications.

We now give a number of examples in order to demonstrate how the properties
of hk(EJ presented can help us both in comparing various k out of n systems and
in calculating bounds for the reliability of specified k out of n systems.

Example 1. Let us consider a 3 out of 4 system. Theorem 4 in particular
implies that a system with component reliabilities (.7, .8, .9, 1.0) is superior
(has higher reliability) than a system with component reliabilities (.75, .75,
.95, .95) which in turn is superior to one with component reliabilities (.85, .85,
.85, .85). Note that for all three of these systems the four component reli-
abilities sum to 3.4, and that each component reliability exceeds %f%-= %u
Theorem 4 also implies that the system with component reliabilities (.2, .3, .5, .6)
is inferior to one with component reliabilities (.2, .4, .4, .6) which in tum is
inferior to one with component reliabilities (.4, .4, .4, .4).

Example 2. We now consider evaluating the reliability of a 5 out of 8
system, As previously indicated, even for this example where k and n are rather
small, the standard method for evaluating hs(pl, ciey p8) would normally involve
(if for example the eight component probabilities are distinct) calculating the
sum of 93 products of 8 numbers each. We will now indicate by judiciously ‘aver-
aging' some (or all) of the component probabilities, how more easily calculable
bounds may be computed for the reliability of the system.

Given a vector p = (pl, ceey p8) of component probabilities, we lose no
generality in assuming that P; < P, < ... S Pg- Let us use the following
notation: pij = (pi + pj)/z and pijzm = (pi + pj +p, ¢ pm)/4 for any integers
i, j, %, m between 1 and 8. As before g'and Pg will denote respectively the

arithmetic and geometric means of the components of the vector p = (pl, caey p8).

—
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m
Note that p = (p)» Ps P3s Pys Pss» Pge Pps Pgd > (Pype Pyzs Pyye Pygs Pogr Poge
P’ Prg)
m
>" (Py234» P1234* P1234* P1234* Pse78® Pse78’ Pse7s’ Pse7s)
The calculation of hk(g) becomes easier as the number of distinct component values

in p decreases. While the calculation of hs(g) could involve adding 93 products,
the calculations of he(pyy, Pyys P3ys P3gr Pggr Psgr Prge Prg)e Ns(Prasss Prass:

P1234, P1234* Pse78® Pse7s* Pse7s* Pse7s) 2nd hg(p) would involve adding respec-
tively at most 31, 10, and 4 products. If the vector components of p = (pl. P,
k-1

4 . 4 .
Pz» p4, ps, P> p7. p8) are all 2 1-7 (respectively < -7-), then we can ecasily

determine some lower (upper) bounds for hS(E) by using Theorems 1 and 4. To
illustrate the accuracy of these bounds we compute some specific probabilities.

a) Let p = (.60, .64, .70, .74, .80, .84, .90, .94). Each p, 2 %-and we

observe that

hS(B) = ,92097 hS('6O’ .64, .70, .74, .80, .84, .90, .94)

2 ,92069 = hs(.62, .62, .72, .72, .82, .82, .92, .92)
2 ,91896 = hs(.67, .67, .67, .67, .87, .87, .87, .87)
2z .91201 = hs(.77, .77, .77, .17, .77, .77, .77, .77).

b) Let p = (.61, .62, .63, .64, .65, .66, .67, .68). Then again each

P; 2 i;- and we observe that

hg ()

.69580 = hs(.61, .62, .63, .64, .65, .66, .67, .68)

v

.69580 = hs(.GIS, .615, .635, .635, .655, .655, .675, .675)

v

.69576 = hs(.625, .625, ,625, .625, .665, .665, .665, .665)

N

.69562 = hs(.645, .645, .645, .645, .645, .645, .645, .645)
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¢) Ifp-=(.10, .14, .20, .24, .30, .34, .40, .44), then each component

P; < % and we observe that

hS(E) = .03188 hs(.IO, .14, .20, .24, .30, .34, .40, .44)

.03206 = h (.12, .12, .22, .22, .32, .32, .42, .42)
.03318 = h(.17, .17, .17, .17, .37, .37, .37, .37)
.03768 = h(.27, .27, .27, .27, .27, .27, .27, .27).

Note that for the given vector p, the geometric mean of the coordinates is

PG © .24276. Using the corollary to Theorem 2 we can compute the lower bound for

hk(g) which is given by hS(EG) = .02410.




Figure 1
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